DYNAGRID® NG
No stopping when you start...

The new web material for a longer battery life:

- Designed for enhanced flooded batteries
- Web remains on plate after pasting and during battery use
- Reduces shedding on positive plate; keeps active material on the grid
- High number of cycles
- Increased efficiency
- Major impact on battery life
- Best-in-class performance during plate processing like DYNAGRID® 313
- No contamination of lead recycling stream

WITH DYNAGRID® NG
During the life of the battery, DYNAGRID® NG remains embedded on the positive plate surface. DYNAGRID® NG reinforces the plate and thereby reduces shedding significantly.
DYNAGRID® NG
Proven significant improvement of Lead-Acid Battery life*

Key benefits:

• Cost savings due to low waste rate and energy efficiency in production process
• Improves your environmental image by minimizing lead emissions
• Improves performance of “SLI” batteries against shock and vibration
• Increases your customers’ satisfaction by offering improved battery life
• Leaves your competitor behind through superior performance improvement
• Reduces warranty cost in challenging applications

Applications:

• Perfectly suited for "SLI" batteries under rough terrain conditions
• Ideal in enhanced flooded batteries

<table>
<thead>
<tr>
<th>Properties</th>
<th>Effect</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic web remaining on positive plate</td>
<td>Reduced shedding, keeps surface of plate intact</td>
<td>Longer battery life</td>
</tr>
<tr>
<td>Porosity: > 1500</td>
<td>Better paste adhesion, reduced drying time</td>
<td>Higher efficiency, lower waste rate, lower fire hazard</td>
</tr>
<tr>
<td>Water climb: > 105mm / 10min</td>
<td>Higher water absorption, less peeling</td>
<td>Less energy consumption</td>
</tr>
<tr>
<td>Purity: Chlorine (ppm)< 100; Iron (ppm)< 50; Manganese (ppm)< 20</td>
<td>Low chlorine and metal content</td>
<td>Better battery performance</td>
</tr>
</tbody>
</table>

Suitable for all state-of-the-art continuous plate making processes.

*Study performed at IEES, department of BAS, Sofia